The BH₄ Radical: an Electron Spin Resonance Study of the Radiolysis of NaBH₄

Martyn C. R. Symons,*a Tsing Chen,a and Christopher Glidewell^b

Department of Chemistry, The University, Leicester LE1 7RH, U.K.
Department of Chemistry, University of St. Andrews, St. Andrews KY16 9ST, U.K.

Exposure of NaBH₄(NaBD₄) to ⁶⁰Co γ -rays at 77 K gave a species having a large proton hyperfine coupling to two equivalent protons(deuterons), and a small coupling to two other protons(deuterons), together with a strongly anisotropic coupling to ¹¹B.

A recent, exciting development in e.s.r. spectroscopy has been the study of a range of alkane cations.^{1,2} Our initial study¹ of $[Me_3C]_2^+$ led to the discovery² by Iwasaki and co-workers of $C_2H_6^+$ and a range of other cations. However, no one has yet succeeded in studying CH_4^+ by e.s.r. methods.

We therefore returned to the task of preparing the isoelectronic species $\cdot BH_4$. We originally found that irradiation of KBH₄ at 77 K gave $\cdot BH_3^{-,3}$ together with $H\dot{B}O^-$ from sample impurities. The former radicals were subsequently studied in $R_4N^+BH_4^{-}$ salts.⁴ Furthermore, irradiation of solutions of NaBH₄(NaBD₄) in aqueous and methanolic glasses gave $\cdot BH_3^{-}(\cdot BD_3^{-})$ radicals together with another species, very tentatively identified as $\cdot BH_4$:⁵ only the outermost features for this species were detected. Very recently, $\cdot BH_3^{-}$ radicals have been detected in the liquid phase.⁶

We now find that carefully purified $NaBH_4$ and $NaBD_4$ give, on radiolysis at 77 K, novel species having a very large hyperfine coupling to two equivalent protons (Table 1). A typical **Table 1.** Observed e.s.r. parameters (A), and calculated spin densities (a_{s}^2, a_{p}^2) for \cdot BH₄ in irradiated NaBH₄.

¹ H _a		¹ H _b		¹¹ B				
$A^{(1}H)^{a}$	a_{s}^{2}	A(1H)a	a_{s^2}	$A_{\parallel}^{(11}\text{B})^{a}$	$A_{\downarrow}(^1$	¹ B) ^a	a_s^2	a_{p^2}
104—141 ^b co	a. 0.25 th 0.364 0.359 0.336	021 ^b c l ^c od 5 ^e	a. 0.02 -0.0 -0.0 -0.0	2b 21b 17c 13d 04e	0 ^p	0.0 0.0 0.0 0.0	01 ^b 006° 003ª 001°	0.39 ^b 0.318 ^c 0.355 ^d 0.351 ^e

^a A values in Gauss: $G = 10^{-4}$ T. ^b Orbital populations estimated from the e.s.r. parameters using standard methods (ref. 7). Because of ambiguities in interpretation, we have used the average values for $A(^{1}H_{a})$ and $A(^{1}H_{b})$. ^c MNDO values at the optimised MNDO geometry. ^d INDO values at the optimised MNDO geometry. ^e Pure doublet state projected from the wave function used in footnote d, at the MNDO optimised geometry.

Figure 1. Second derivative X-band e.s.r. spectrum for NaBH₄ after exposure to ⁶⁰Co γ -rays at 77 K, showing features assigned to •BH₄ radicals. The features α are assigned to •BH₃⁻ radicals.

spectrum is shown in Figure 1. There are extra features in the powder spectrum besides the intense triplet, and careful thermal studies suggest that they all belong to the same species. This is supported by results for NaBD₄. One possible interpretation of this spectrum is given in Table 1. Although we are not certain that this is the best possible fit, computer simulation accommodates most of the salient features. In effect, the three strong lines may be taken as 'perpendicular' features whilst those indicated on the stick diagram are 'parallel' features. (Extra features marked or in Figure 1 are due to $\cdot BH_3^-$ radicals.)

Since the HOMO for both CH₄ and BH₄⁻ is triply degenerate (t₂), the radicals CH₄⁺ and •BH₄ cannot retain T_d symmetry. Our results suggest that, for •BH₄, the distortion from T_d is such that the protons stay equivalent in pairs (C_{2v}); the identification of this species as •BH₄ seems to be unavoidable, since one ¹¹B nucleus and two pairs of equivalent protons are detected. (The resolution is too poor for us to detect features from ¹⁰B.)

Analysis of the e.s.r. data in the usual way⁷ shows that the SOMO is confined to a 2p orbital on boron and the 1s orbitals of two hydrogen atoms, with the other pair of hydrogen atoms lying in the nodal plane of the SOMO (Figure 2). It is interesting that this distortion appears to be similar to that in SiMe₄⁺, where there are two strongly coupled and two weakly coupled sets of methyl protons,^{8,9} but different from those in CMe₄⁺,² and SnMe₄⁺,⁹ which distort to give C_{3v} structures.

Clearly the choice between D_{2d} , C_{3v} , or C_{2v} distortions must be subtle. Experimental and theoretical studies of CH₄⁺ all assign D_{2d} symmetry to its ground state,¹⁰⁻¹² and so we have calculated the equilibrium structure of \cdot BH₄ using the MNDO -UHF technique.^{13,14} The MNDO results (Table 1 and Figure 2) strongly support the e.s.r. interpretation of a C_{2v} radical.

Figure 2. Optimised geometries for \cdot BH₄ (C_{2r} , 2 B₁) and CH₄⁺ (D_{2d} , 2 B₂), calculated by MNDO–UHF^{13,14} showing geometrical parameters, and schematic forms of the SOMO; ΔH_{1}° values are: \cdot BH₄, +222.4 kJ mol⁻¹; CH₄⁺, +1140.8 kJ mol⁻¹.

The results of a similar calculation for CH_4^+ (D_{2d}) are shown in Figure 2 for comparison. The calculations do not reveal directly the reason for the switch in structural preference from CH_4^+ to $\cdot BH_4$: however, CH_4^+ and $\cdot BH_4$ (and the isoelectronic BeH_4^-) each exhibit two local minima, of D_{2d} and C_{2v} sym-

- 1 M. C. R. Symons and I. G. Smith, J. Chem. Res. (S), 1979, 382.
- 2 M. Iwasaki, K. Toriyama, and K. Nunome, J. Am. Chem.
- Soc., 1981, **103**, 3591; J. Phys. Chem., 1981, **85**, 2149. 3 R. C. Catton, M. C. R. Symons, and H. W. Wardale, J. Chem.
- *Soc.*, *A*, 1969, 2622. 4 E. D. Sprague and F. Williams, *Mol. Phys.*, 1971, **20**, 375.
- 5 M. C. R. Symons, *Radiat. Phys. Chem.*, 1976, **8**, 381.
- 6 J. R. M. Giles and B. P. Roberts, J. Chem. Soc., Chem. Commun., 1981, 360.
- 7 M. C. R. Symons, 'Chemical and Biochemical Aspects of Electron Spin Resonance Spectroscopy,' Van Nostrand Reinhold, London, 1978.
- 8 B. W. Walther and F. Williams, J. Chem. Soc., Chem. Commun., 1982, 270.
- 9 M. C. R. Symons, J. Chem. Soc., Chem. Commun., 1982, 869.
- 10 J. Arents and L. C. Allen, J. Chem. Phys., 1970, 53, 73.
- 11 J. W. Rabelais, T. Bergmark, L. O. Werme, L. Karlsson, and K. Seigbahn, *Phys. Scr.*, 1971, 3, 13.
- 12 A. W. Potts and W. C. Price, Proc. R. Soc. London, Ser. A, 1972, 326, 165.
- 13 M. J. S. Dewar and W. Thiel, J. Am. Chem. Soc., 1977, 99, 4899.
- 14 W. Thiel, P. Wiener, J. Stewart, and M. J. S. Dewar, Quantum Chemistry Program Exchange, No. 428.
- 15 W. R. M. Graham and W. Weltner, J. Chem. Phys., 1976, 65, 1516.

exposure to moist air prior to irradiation. Furthermore, the ¹H coupling should be almost completely isotropic (as for H_2CN_2 , for example) and the anisotropic ¹¹B coupling

cavities containing the •BH₄ radicals.

should be small. In fact, a radical thought to be H_2BO has been studied by Weltner and his co-workers;¹⁵ the isotropic coupling found for ¹¹B, *ca*. 31 G, is far too large for the present species. Of course, neither of these candidates should exhibit coupling to two further protons. We conclude that the species detected is most probably the previously unknown radical $\cdot BH_4$.

which change with change of radical. Hence the observation

of a C_{2x} structure for $\cdot BH_4$ reflects a property intrinsic to this

radical rather than one consequent upon the symmetry of the

species that should display a large hyperfine coupling to two

protons are \cdot BH₂ and H₂BO \cdot . The former should also have a

large isotropic component in the ¹¹B hyperfine coupling, since

it has a strongly bent ground state, and so it can be ruled out.

The latter seems unlikely since we used high grade materials,

and the signals for the radical under consideration were lost on

These results seem to us to be definitive. Other possible

Received, 9th December 1982; Com. 1422